Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Biomed Mater ; 19(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387063

RESUMO

Maintaining the continuous oxygen supply and proper cell growth before blood vessel ingrowth at the bone defect site are considerably significant issues in bone regeneration. Oxygen-producing scaffolds can supply oxygen and avoid hypoxia leading to expedited bone regeneration. Herein, first oxygen-producing calcium peroxide nanoparticles (CPO NPs) are synthesized, and subsequently, the various amounts of synthesized CPO NPs (0.1, 0.5, and 1 wt/v%) loaded in the scaffold composite, which is developed by simple physical blending of chitosan (CS) and polycaprolactone (PCL) polymers. To deliver the synergistic therapeutic effect, dexamethasone (DEX), known for its potential anti-inflammatory and osteogenic properties, is loaded into the nanocomposite scaffolds. The extensive physicochemical characterizations of nanocomposite scaffolds confirm the successful loading of CPO NPs, adequate porous morphology, pore size, hydrophilicity, and biodegradability.In vitro, biological studies support the antibacterial, hemocompatible, and cytocompatible (MG-63 and MC3T3-E1 cells) nature of the material when tested on respective cells. Field emission scanning electron microscopy and energy-dispersive x-ray spectroscopy confirm the successful biomineralization of the scaffolds. Scaffolds also exhibit the sustained release of DEX and efficient protein adsorption. This study revealed that a nanoengineered scaffold loaded with CPO NPs (PCL/CS/DEX/CPO 3) is a suitable candidate for bone tissue regeneration.


Assuntos
Quitosana , Tecidos Suporte , Tecidos Suporte/química , Engenharia Tecidual , Preparações de Ação Retardada , Oxigênio , Polímeros/química , Osteogênese , Quitosana/química , Regeneração Óssea , Dexametasona/química
2.
Chem Biodivers ; 21(2): e202301525, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38129310

RESUMO

Over the past decades, the synthetic glucocorticoids (GCs) have been widely used in clinical practice and animal husbandry. Given the health hazard of these toxic residues in food, it is necessary to explore the detailed interaction mechanisms of typical GCs and their main target glucocorticoid receptor (GR). Hence, this work compared the GR binding and agonist activities of typical GCs. Fluorescence polarization assay showed that these GCs were potent ligands of GR. Their GR binding affinities were in the order of methylprednisolone>betamethasone≈prednisolone>dexamethasone, with IC50 values of 1.67, 2.94, 2.95, and 5.58 nM. Additionally, the limits of detection of dexamethasone, betamethasone, prednisolone, and methylprednisolone were 0.32, 0.14, 0.19, and 0.09 µg/kg in fluorescence polarization assay. Reporter gene assay showed that these GCs induced GR transactivation in a dose-dependent manner, confirming their GR agonist activities. Among which, dexamethasone at the concentration of 100 nM produced a maximal induction of more than 11-fold over the blank control. Molecular docking and molecular dynamics simulations suggested that hydrogen-bonding and hydrophobic interactions played an important role in stabilizing the GC-GR-LBD complexes. In summary, this work might help to understand the GR-mediated endocrine disrupting effects of typical GCs.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Animais , Glucocorticoides/farmacologia , Glucocorticoides/química , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Simulação de Acoplamento Molecular , Dexametasona/farmacologia , Dexametasona/química , Dexametasona/metabolismo , Metilprednisolona
3.
Mol Pharm ; 20(12): 6330-6344, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37955890

RESUMO

Long-acting injectable formulations based on poly(lactide-co-glycolide) (PLGA) have been commercialized for over 30 years in at least 20 FDA-approved products. These formulations offer several advantages, including reduced dosing frequency, improved patient compliance, and maintenance of therapeutic levels of drug. Despite extensive studies, the inherent complexity of the PLGA copolymer still poses significant challenges associated with the development of generic formulations having drug release profiles equivalent to those of the reference listed drugs. In addition, small changes to PLGA physicochemical properties or the drug product manufacturing process can have a major impact on the drug release profile of these long-acting formulations. This work seeks to better understand how variability in the physicochemical properties of similar PLGAs affects drug release from PLGA solid implants using Ozurdex (dexamethasone intravitreal implant) as the model system. Four 50:50, acid-terminated PLGAs of similar molecular weights were used to prepare four dexamethasone intravitreal implants structurally equivalent to Ozurdex. The PLGAs were extensively characterized by using a variety of analytical techniques prior to implant manufacture using a continuous, hot-melt extrusion process. In vitro release testing of the four structurally equivalent implants was performed in both normal saline and phosphate-buffered saline (PBS), yielding drastically different results between the two methods. In normal saline, no differences in the release profiles were observed. In PBS, the drug release profiles were sensitive to small changes in the residual monomer content, carboxylic acid end group content, and blockiness of the polymers. This finding further underscores the need for a physiologically relevant in vitro release testing method as part of a robust quality control strategy for PLGA-based solid implant formulations.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Humanos , Liberação Controlada de Fármacos , Ácido Poliglicólico/química , Ácido Láctico/química , Solução Salina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Dexametasona/química
4.
Biomed Mater ; 18(4)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146616

RESUMO

Diabetes has made it challenging to repair alveolar bone defects. A successful method for bone repair utilizes a glucose-sensitive osteogenic drug delivery. This study created a new glucose-sensitive nanofiber scaffold with controlled dexamethasone (DEX) release. DEX-loaded polycaprolactone/chitosan nanofibers scaffolds were created using electrospinning. The nanofibers had high porosity (>90%) and proper drug loading efficiency (85.51 ± 1.21%). Then, glucose oxidase (GOD) was immobilized on the obtained scaffolds by a natural biological cross-linking agent, genipin (GnP), after soaking in the mixture solution containing GOD and GnP. The enzyme properties and glucose sensitivity of the nanofibers were investigated. The results showed that GOD was immobilized on the nanofibers and exhibited good enzyme activity and stability. Meanwhile, the nanofibers expanded gradually in response to the increase in glucose concentration, followed by the release of DEX increased. The phenomena indicated that the nanofibers could sense glucose fluctuation and possess favorable glucose sensitivity. In addition, the GnP nanofibers group showed lower cytotoxicity in the biocompatibility test compared with a traditional chemical cross-linking agent. Lastly, the associated osteogenesis evaluation found that the scaffolds effectively promoted MC3T3-E1 cells' osteogenic differentiation in high-glucose environments. As a result, the glucose-sensitive nanofibers scaffolds offer a viable treatment option for people with diabetes with alveolar bone defects.


Assuntos
Células-Tronco Mesenquimais , Nanofibras , Humanos , Osteogênese , Dexametasona/química , Tecidos Suporte/química , Nanofibras/química , Engenharia Tecidual/métodos , Diferenciação Celular
5.
Eur J Pharm Biopharm ; 187: 46-56, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037387

RESUMO

Ozurdex is an FDA-approved sustained-release, biodegradable implant formulated to deliver the corticosteroid dexamethasone to the posterior segment of the eye for up to 6 months. Hot-melt extrusion is used to prepare the 0.46 mm × 6 mm, rod-shaped implant by embedding the drug in a matrix of poly(lactic-co-glycolic acid) (PLGA) in a 60:40 drug:polymer ratio by weight. In our previous work, the Ozurdex implant was carefully studied and reverse engineered to produce a compositionally and structurally equivalent implant for further analysis. In this work, the reverse-engineered implant was thoroughly characterized throughout the in vitro dissolution process to elucidate the mechanisms of controlled drug release. The implant exhibited a triphasic release profile in 37 °C normal saline with a small burst release (1-2 %), a one-week lag phase with limited release (less than 10 %), and a final phase where the remainder of the dose was released over 3-4 weeks. The limited intermolecular interaction between dexamethasone and PLGA rendered the breakdown of the polymer the dominating mechanism of controlled release. A close relationship between drug release and total implant mass loss was observed. Unique chemical and structural differences were seen between the core of the implant and the implant surface driven by diffusional limitations, autocatalytic hydrolysis, and osmotic effects.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Liberação Controlada de Fármacos , Dexametasona/química , Implantes de Medicamento
6.
Endocrine ; 80(2): 425-432, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36917416

RESUMO

ABSTARCT: PURPOSE: The diagnostic value of adding a Corticotropin-Releasing Hormone (CRH) Stimulation Test to the 2-day Low Dose Dexamethasone Suppression Test (Dex-CRH Test) has been debated in the literature. METHODS: We identified 65 patients with Cushing disease (CD) and 42 patients in whom a diagnosis of Cushing disease could not be confirmed (NCD) after a minimum follow-up of 14 months who underwent the Dex-CRH test. RESULTS: The female sex ratio, median (range) age, and BMI were similar between the two groups. The follow-up for patients with CD and NCD was 74 (4-233) and 52 (14-146) months, respectively. Among 65 patients with CD, 5 (7.7%) had a cortisol level ≤1.4 µg/dl after LDDST but were appropriately classified as CD with a cortisol level >1.4 µg/dL at 15-min post CRH stimulation. In contrast, 3/42 patients (7.1%) in NCD had an abnormal Dex-CRH test. In only one of three patients, the LDDST was marginally normal (cortisol was 1.4 µg/dL and increased to 3.1 µg/dL 15-min post CRH). A cortisol cutoff value of >1.4 µg/dL during the Dex-CRH test provided a sensitivity of 100%, specificity of 93%, and diagnostic accuracy of 97% to diagnose CD. When patients without a Dex level were excluded (n = 74), the sensitivity did not change, but the specificity and accuracy of the Dex-CRH test increased to 97 and 99%, respectively. CONCLUSION: The Dex-CRH Test provided additional case detection in 5/65 (7.7%) patients with CD. It resulted in one false-positive case compared to LDDST. Measurement of dexamethasone improved diagnostic accuracy of the test.


Assuntos
Hormônio Liberador da Corticotropina , Doenças não Transmissíveis , Hipersecreção Hipofisária de ACTH , Feminino , Humanos , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/química , Dexametasona/química , Dexametasona/farmacologia , Hidrocortisona , Hipersecreção Hipofisária de ACTH/diagnóstico , Hipersecreção Hipofisária de ACTH/metabolismo
7.
Colloids Surf B Biointerfaces ; 222: 113016, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427406

RESUMO

Bone tissue engineering requires a material that can simultaneously promote osteogenic differentiation and anti-inflammatory effects at specific times in response to a series of problems after bone implantation. In this study, the porous network-like titanium matrix was constructed and polypyrrole/dexamethasone (Ppy/Dex) composite coatings with three-dimensional nano-network structure were prepared by electrochemical deposition. The biocompatibility of the composite coatings was further improved by the composite of the extracellular matrix (ECM). The Ppy/Dex/ECM composite coatings released Dex by changing the redox state of Ppy under the electrical stimulation of negative pulses, achieving a drug release controlled by electric field. In terms of osteogenic differentiation, the Ppy/Dex/ECM composite coatings exhibited the best osteogenic activity under electrical controlled release, indicating the synergistic effect of Dex and ECM on osteogenic differentiation. In terms of anti-inflammatory properties, ECM exhibited simultaneous inhibition of both pro- and anti-inflammatory process, while Dex demonstrated significant promotion of anti-inflammatory processes. In this work, the effect of electrical controlled drug release on osteogenic differentiation and inflammation in the ECM cell microenvironment was achieved by preparing Ppy/Dex/ECM composite coatings, which is of great significance for bone tissue engineering and regenerative medicine.


Assuntos
Osteogênese , Polímeros , Polímeros/química , Liberação Controlada de Fármacos , Dexametasona/farmacologia , Dexametasona/química , Pirróis/farmacologia , Pirróis/química , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Matriz Extracelular
8.
Biomaterials ; 286: 121586, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635896

RESUMO

Inflammation-driven foreign body reactions, and the frequently associated encapsulation by fibrogenic fibroblasts, reduce the functionality and longevity of implanted medical devices and materials. Anti-inflammatory drugs, such as dexamethasone, can suppress the foreign body reaction for a few days post-surgery, but lasting drug delivery strategies for long-term implanted materials remain an unmet need. We here establish a thin-coating strategy with novel low molecular weight corticosteroid dimers to suppress foreign body reactions and fibrotic encapsulation of subcutaneous silicone implants. The dimer coatings are >75% dexamethasone by mass and directly processable into conformal coatings using conventional solvent-based techniques, such as casting or spray coating without added polymers or binding agents. In vitro, surface erosion of the coating, and subsequent hydrolysis, provide controlled release of free dexamethasone. In a rat subcutaneous implantation model, the resulting slow and sustained release profile of dexamethasone is effective at reducing the number and activation of pro-fibrotic macrophages both acutely and at chronic time points. Consequently, fibroblast activation, collagen deposition and fibrotic encapsulation are suppressed at least 45 days post-implantation. Thus, our approach to protect implants from host rejection is advantageous over polymeric drug delivery systems, which typically have low drug loading capacity (<30%), initial burst release profiles, and unpredictable release kinetics.


Assuntos
Polímeros , Próteses e Implantes , Corticosteroides , Animais , Preparações de Ação Retardada , Dexametasona/química , Fibrose , Reação a Corpo Estranho/prevenção & controle , Peso Molecular , Ratos
9.
J Mater Sci Mater Med ; 33(3): 29, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244790

RESUMO

Amniotic membrane (AM) is often applied as a substitute material during ocular surface reconstruction. However, since AM has several disadvantages, alternative materials must be considered for this application. Keratin films made from human hair (KFs) have previously been presented as a promising option; they exhibited suitable characteristics and satisfactory biocompatibility in an in vivo rabbit model. Nevertheless, dexamethasone (DEX) eye drops are necessary after surgery to suppress inflammation. Since eye drops must be administered frequently, this might result in poor patient compliance, and the release of DEX at the transplant site would be clinically beneficial. Therefore, we aimed to incorporate DEX into KFs without hindering the positive film characteristics. Drug-loaded KFs were generated either by suspension technique or by the addition of solubilizing agents. The resulting specimens were analyzed regarding appearance, loading capacity, transparency, mechanical characteristics, swelling behavior and in vitro release. Furthermore, biocompatibility was assessed in vitro by determining the cell viability, seeding efficiency and growth behavior of corneal epithelial cells. The amount of incorporated DEX influenced the transparency and biomechanical properties of the films, but even highly loaded films showed properties similar to those of AM. The suspension technique was identified as the best incorporation approach regarding chemical stability and prolonged DEX release. Moreover, suspended DEX in the films did not negatively impact cell seeding efficiencies, and the cell-growth behaviors on the specimens with moderate DEX loads were satisfactory. This suggest that these films could comprise a suitable alternative material with additional anti-inflammatory activity for ocular surface reconstruction. Graphical abstract.


Assuntos
Anti-Inflamatórios , Queratinas , Tecidos Suporte , Âmnio , Animais , Anti-Inflamatórios/uso terapêutico , Dexametasona/química , Inflamação , Queratinas/química , Oftalmologia/métodos , Coelhos
10.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209205

RESUMO

Cochlear implants, like other active implants, rely on precise and effective electrical stimulation of the target tissue but become encapsulated by different amounts of fibrous tissue. The current study aimed at the development of a dual drug release from a PLLA coating and from the bulk material to address short-term and long-lasting release of anti-inflammatory drugs. Inner-ear cytocompatibility of drugs was studied in vitro. A PLLA coating (containing diclofenac) of medical-grade silicone (containing 5% dexamethasone) was developed and release profiles were determined. The influence of different coating thicknesses (2.5, 5 and 10 µm) and loadings (10% and 20% diclofenac) on impedances of electrical contacts were measured with and without pulsatile electrical stimulation. Diclofenac can be applied to the inner ear at concentrations of or below 4 × 10-5 mol/L. Release of dexamethasone from the silicone is diminished by surface coating but not blocked. Addition of 20% diclofenac enhances the dexamethasone release again. All PLLA coatings serve as insulator. This can be overcome by using removable masking on the contacts during the coating process. Dual drug release with different kinetics can be realized by adding drug-loaded coatings to drug-loaded silicone arrays without compromising electrical stimulation.


Assuntos
Anti-Inflamatórios , Materiais Revestidos Biocompatíveis/química , Implantes Cocleares , Dexametasona , Diclofenaco , Sistemas de Liberação de Medicamentos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Dexametasona/química , Dexametasona/farmacocinética , Diclofenaco/química , Diclofenaco/farmacocinética , Liberação Controlada de Fármacos , Ratos , Ratos Sprague-Dawley
11.
Theranostics ; 12(2): 734-746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976210

RESUMO

Background: Asymmetric intracellular and extracellular ionic gradients are critical to the survivability of mammalian cells. Given the importance of manganese (Mn2+), calcium (Ca2+), and bicarbonate (HCO3-) ions, any alteration of the ion-content balance could induce a series of cellular responses. HCO3- plays an indispensable role for Mn-mediated Fenton-like reaction, but this is difficult to achieve because bicarbonates are tightly regulated by live cells, and are limited in anticancer efficacy. Methods: A responsive and biodegradable biomineral, Mn-doped calcium carbonate integrated with dexamethasone phosphate (DEX) (Mn:CaCO3-DEX), was reported to enable synergistic amplification of tumor oxidative stress, reduce inflammation, and induce Ca-overload cell apoptosis by elevating the intracellular and extracellular ionic gradients. Results: Under the acidic environment in tumor region, the ions (Mn2+, CO32-, Ca2+) were released by the degradation of Mn:CaCO3-DEX and then escalated oxidative stresses by triggering a HCO3--indispensable Mn-based Fenton-like reaction and breaking Ca2+ ion homeostasis to cause oxidative stress in cells and calcification. The released anti-inflammatory and antitumor drug, DEX, could alleviate the inflammatory environment. The investigations in vitro and in vivo demonstrated that the synergistic oncotherapy could effectively inhibit the growth of subcutaneous tumors and orthotopic liver tumors. Notably, normal cells showed greater tolerance of the synergistic influences. Conclusion: As an ion drug, Mn:CaCO3-DEX is an excellent potential diagnostic agent for precise orthotopic tumor management by the generation in situ of toxic ion and drug pools in the environment of tumor region, with synergistic effects of enhanced chemodynamic therapy, calcification, and anti-inflammation effects.


Assuntos
Antineoplásicos/farmacologia , Carbonato de Cálcio/farmacologia , Dexametasona/análogos & derivados , Íons/farmacologia , Antineoplásicos/química , Cálcio/farmacologia , Carbonato de Cálcio/química , Linhagem Celular Tumoral , Dexametasona/química , Dexametasona/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Íons/toxicidade , Manganês/farmacologia , Estresse Oxidativo
12.
Carbohydr Polym ; 278: 118969, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973784

RESUMO

We prepared a new injectable thermogel to enhance the efficiency of inner ear delivery of dexamethasone (DEX). Hexanoyl glycol chitosan (HGC) was synthesized and evaluated as an amphiphilic thermogel (Tgel ~ 32 °C) for use as a solubilizing agent as well as an injectable carrier for intratympanic delivery of the hydrophilic and hydrophobic forms of DEX. Various thermogel formulations with different drug types and concentrations were prepared, and their physicochemical and thermogelling properties were characterized by 1H NMR, ATR-FTIR, and rheometer. They exhibited versatile release kinetics from several hours to more than 2 weeks, depending on drug type and concentration. Our formulations further showed good residual stability for more than 21 days without any cytotoxicity or inflammation in the middle and inner ear and could deliver a considerably high drug concentration into the inner ear. Therefore, HGC thermogel has great potential as an effective and safe formulation for inner ear drug delivery.


Assuntos
Quitosana/química , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos , Orelha Interna/efeitos dos fármacos , Temperatura , Animais , Quitosana/administração & dosagem , Quitosana/síntese química , Dexametasona/administração & dosagem , Dexametasona/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Composição de Medicamentos , Géis/administração & dosagem , Géis/síntese química , Géis/química , Cobaias , Masculino , Estrutura Molecular
13.
ACS Appl Mater Interfaces ; 14(1): 307-323, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968038

RESUMO

Mesangial cell (MC)-mediated glomerulonephritis is a frequent cause of end-stage renal disease, with immune inflammatory damage and fibrosis as its basic pathological processes. However, the treatment of glomerulonephritis remains challenging owing to limited drug accumulation and serious side effects. Hence, the specific codelivery of "anti-inflammatory/antifibrosis" drugs to the glomerular MC region is expected to yield better therapeutic effects. In this study, liposome-nanoparticle hybrids (Au-LNHy) were formed by coating the surface of gold nanoparticles with a phospholipid bilayer; the Au-LNHys formed were comodified with PEG and α8 integrin antibodies to obtain gold nanoparticle immunoliposomes (Au-ILs). Next, the Au-ILs were loaded with dexamethasone and TGFß1 siRNA to obtain DXMS/siRNA@Au-ILs. Our results showed that the functionalized nanoparticles had a core-shell structure, a uniform and suitable particle size, low cytotoxicity, and good MC entry, and lysosomal escape abilities. The nanoparticles were found to exhibit enhanced retention in glomerular MCs due to anti-α8 integrin antibody mediation. In vivo and in vitro pharmacodynamic studies showed the enhanced efficacy of DXMS/siRNA@Au-ILs modified with α8 integrin antibodies in the treatment of glomerulonephritis. In addition, DXMS/siRNA@Au-ILs were capable of effectively reducing the expression levels of TNF-α, TGF-ß1, and other cytokines, thereby improving pathological inflammatory and fibrotic conditions in the kidney, and significantly mediating the dual regulation of inflammation and fibrosis. In summary, our results demonstrated that effectively targeting the MCs of the glomerulus for drug delivery can inhibit local inflammation and fibrosis and produce better therapeutic effects, providing a new strategy and promising therapeutic approach for the development of targeted therapies for glomerular diseases.


Assuntos
Dexametasona/uso terapêutico , Glomerulonefrite/tratamento farmacológico , Ouro/uso terapêutico , Nanopartículas Metálicas/química , RNA Interferente Pequeno/uso terapêutico , Fator de Crescimento Transformador beta1/química , Animais , Células Cultivadas , Dexametasona/química , Ouro/química , Humanos , Lipossomos/química , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos , RNA Interferente Pequeno/química
14.
Biomolecules ; 11(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944539

RESUMO

Dexamethasone is widely used in preclinical studies and clinical trials to treat inner ear disorders. The results of those studies vary widely, maybe due to the different dexamethasone formulations used. Laboratory (lab) and medical grade (med) dexamethasone (DEX, C22H29FO5) and dexamethasone dihydrogen phosphate-disodium (DPS, C22H28FNa2O8P) were investigated for biocompatibility and bio-efficacy in vitro. The biocompatibility of each dexamethasone formulation in concentrations from 0.03 to 10,000 µM was evaluated using an MTT assay. The concentrations resulting in the highest cell viability were selected to perform a bio-efficiency test using a TNFα-reduction assay. All dexamethasone formulations up to 900 µM are biocompatible in vitro. DPS-lab becomes toxic at 1000 µM and DPS-med at 2000 µM, while DEX-lab and DEX-med become toxic at 4000 µM. Bio-efficacy was evaluated for DEX-lab and DPS-med at 300 µM, for DEX-med at 60 µM, and DPS-lab at 150 µM, resulting in significantly reduced expression of TNFα, with DPS-lab having the highest effect. Different dexamethasone formulations need to be applied in different concentration ranges to be biocompatible. The concentration to be applied in future studies should carefully be chosen based on the respective dexamethasone form, application route and duration to ensure biocompatibility and bio-efficacy.


Assuntos
Dexametasona/análogos & derivados , Dexametasona/farmacologia , Orelha Interna/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Dexametasona/química , Dexametasona/uso terapêutico , Relação Dose-Resposta a Droga , Composição de Medicamentos , Humanos , Camundongos , Células NIH 3T3
15.
Sci Rep ; 11(1): 21507, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728694

RESUMO

The drug delivery system (DDS) often causes toxicity, triggering undesired cellular injuries. Thus, developing supramolecules used as DDS with tunable self-assembly and nontoxic behavior is highly desired. To address this, we aimed to develop a tunable amphiphilic ABA-type triblock copolymer that is nontoxic to human blood cells but also capable of self-assembling, binding and releasing the clinically used drug dexamethasone. We synthesized an ABA-type amphiphilic triblock copolymer (P2L) by incorporating tetra(aniline) TANI as a hydrophobic and redox active segment along with monomethoxy end-capped polyethylene glycol (mPEG2k; Mw = 2000 g mol-1) as biocompatible, flexible and hydrophilic part. Cell cytotoxicity was measured in whole human blood in vitro and lung cancer cells. Polymer-drug interactions were investigated by UV-Vis spectroscopy and computational analysis. Our synthesized copolymer P2L exhibited tuned self-assembly behavior with and without external stimuli and showed no toxicity in human blood samples. Computational analysis showed that P2L can encapsulate the clinically used drug dexamethasone and that drug uptake or release can also be triggered under oxidation or low pH conditions. In conclusion, copolymer P2L is nontoxic to human blood cells with the potential to carry and release anticancer/anti-inflammatory drug dexamethasone. These findings may open up further investigations into implantable drug delivery systems/devices with precise drug administration and controlled release at specific locations.


Assuntos
Dexametasona/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hemólise/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Polímeros/química , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacologia , Dexametasona/química , Humanos , Neoplasias Pulmonares/patologia , Micelas , Polietilenoglicóis/química , Células Tumorais Cultivadas
16.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638821

RESUMO

The delivery of a dexamethasone formulation directly into the lung appears as an appropriate strategy to strengthen the systemic administration, reducing the dosage in the treatment of lung severe inflammations. For this purpose, a hyaluronic acid-dexamethasone formulation was developed, affording an inhalable reconstituted nanosuspension suitable to be aerosolized. The physico-chemical and biopharmaceutical properties of the formulation were tested: size, stability, loading of the spray-dried dry powder, reconstitution capability upon redispersion in aqueous media. Detailed structural insights on nanoparticles after reconstitution were obtained by light and X-ray scattering techniques. (1) The size of the nanoparticles, around 200 nm, is in the proper range for a possible engulfment by macrophages. (2) Their structure is of the core-shell type, hosting dexamethasone nanocrystals inside and carrying hyaluronic acid chains on the surface. This specific structure allows for nanosuspension stability and provides nanoparticles with muco-inert properties. (3) The nanosuspension can be efficiently aerosolized, allowing for a high drug fraction potentially reaching the deep lung. Thus, this formulation represents a promising tool for the lung administration via nebulization directly in the pipe of ventilators, to be used as such or as adjunct therapy for severe lung inflammation.


Assuntos
Dexametasona/química , Ácido Hialurônico/química , Nanopartículas/química , Pneumonia/tratamento farmacológico , Administração por Inalação , Aerossóis , Dexametasona/farmacologia , Humanos , Ácido Hialurônico/farmacologia , Nanopartículas/uso terapêutico
17.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681619

RESUMO

The development of intravitreal glucocorticoid delivery systems is a current global challenge for the treatment of inflammatory diseases of the posterior segment of the eye. The main advantages of these systems are that they can overcome anatomical and physiological ophthalmic barriers and increase local bioavailability while prolonging and controlling drug release over several months to improve the safety and effectiveness of glucocorticoid therapy. One approach to the development of optimal delivery systems for intravitreal injections is the conjugation of low-molecular-weight drugs with natural polymers to prevent their rapid elimination and provide targeted and controlled release. This study focuses on the development of a procedure for a two-step synthesis of dexamethasone (DEX) conjugates based on the natural polysaccharide chitosan (CS). We first used carbodiimide chemistry to conjugate DEX to CS via a succinyl linker, and we then modified the obtained systems with succinic anhydride to impart a negative ζ-potential to the polymer particle surface. The resulting polysaccharide carriers had a degree of substitution with DEX moieties of 2-4%, a DEX content of 50-85 µg/mg, and a degree of succinylation of 64-68%. The size of the obtained particles was 400-1100 nm, and the ζ-potential was -30 to -33 mV. In vitro release studies at pH 7.4 showed slow hydrolysis of the amide and ester bonds in the synthesized systems, with a total release of 8-10% for both DEX and succinyl dexamethasone (SucDEX) after 1 month. The developed conjugates showed a significant anti-inflammatory effect in TNFα-induced and LPS-induced inflammation models, suppressing CD54 expression in THP-1 cells by 2- and 4-fold, respectively. Thus, these novel succinyl chitosan-dexamethasone (SucCS-DEX) conjugates are promising ophthalmic carriers for intravitreal delivery.


Assuntos
Anti-Inflamatórios/química , Quitosana/química , Dexametasona/química , Portadores de Fármacos/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Linhagem Celular , Dexametasona/metabolismo , Dexametasona/farmacologia , Liberação Controlada de Fármacos , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
18.
ACS Appl Mater Interfaces ; 13(43): 50836-50850, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34689546

RESUMO

Polyetheretherketone (PEEK) is a biocompatible polymer, but its clinical application is largely limited due to its inert surface. To solve this problem, a multifunctional PEEK implant is urgently fabricated. In this work, a dual-metal-organic framework (Zn-Mg-MOF74) coating is bonded to PEEK using a mussel-inspired polydopamine interlayer to prepare the coating, and then, dexamethasone (DEX) is loaded on the coating surface. The PEEK surface with the multifunctional coating provides superior hydrophilicity and favorable stability and forms an alkaline microenvironment when Mg2+, Zn2+, 2,5-dihydroxyterephthalic acid, and DEX are released due to the coating degradation. In vitro results showed that the multifunctional coating has strong antibacterial ability against both Escherichia coli and Staphylococcus aureus; it also improves human umbilical vein endothelial cell angiogenic ability and enhances rat bone marrow mesenchymal stem cell osteogenic differentiation activity. Furthermore, the in vivo rat subcutaneous infection model, chicken chorioallantoic membrane model, and rat femoral drilling model verify that the PEEK implant coated with the multifunctional coating has strong antibacterial and angiogenic ability and promotes the formation of new bone around the implant with a stronger bone-implant interface. Our findings indicate that DEX loaded on the Zn-Mg-MOF74 coating-modified PEEK implant with bacteriostasis, angiogenesis, and osteogenesis properties has great clinical application potential as bone graft materials.


Assuntos
Antibacterianos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Estruturas Metalorgânicas/farmacologia , Neovascularização Patológica/tratamento farmacológico , Adsorção , Animais , Antibacterianos/síntese química , Antibacterianos/química , Benzofenonas/química , Benzofenonas/farmacologia , Dexametasona/química , Dexametasona/farmacologia , Escherichia coli/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Masculino , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neovascularização Patológica/microbiologia , Polímeros/química , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Zinco/química , Zinco/farmacologia
19.
Mol Pharm ; 18(11): 4188-4197, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569234

RESUMO

Glucocorticoids (GCs) are widely used in the clinical management of lupus nephritis (LN). Their long-term use, however, is associated with the risk of significant systemic side effects. We have developed a poly(ethylene glycol) (PEG)-based dexamethasone (Dex) prodrug (i.e., ZSJ-0228) and in a previous study, demonstrated its potential therapeutic efficacy in mice with established LN, while avoiding systemic GC-associated toxicity. In the present study, we have employed a dose-escalation design to establish the optimal dose-response relationships for ZSJ-0228 in treating LN and further investigated the safety of ZSJ-0228 in lupus-prone NZB/W F1 mice with established nephritis. ZSJ-0228 was intravenously (i.v.) administered monthly at four levels: 0.5 (L1), 1.0 (L2), 3.0 (L3), and 8.0 (L4) mg/kg/day Dex equivalent. For controls, mice were treated with i.v. saline every 4 weeks. In addition, a group of mice received intraperitoneal injections (i.p.) of Dex every day or i.v. injections of Dex every four weeks. Treatment of mice with LN with ZSJ-0228 dosed at L1 resulted in the resolution of proteinuria in 14% of the mice. Mice treated with ZSJ-0228 dosed at L2 and L3 levels resulted in the resolution of proteinuria in ∼60% of the mice in both groups. Treatment with ZSJ-0228 dosed at L4 resulted in the resolution of proteinuria in 30% of the mice. The reduction and/or resolution of the proteinuria, improvement in renal histological scores, and survival data indicate that the most effective dose range for ZSJ-0228 in treating LN in NZB/W F1 mice is between 1.0 and 3.0 mg/kg/day Dex equivalent. Typical GC-associated side effects (e.g., osteopenia, adrenal glands atrophy, etc.) were not observed in any of the ZSJ-0228 treatment groups, confirming its excellent safety profile.


Assuntos
Dexametasona/administração & dosagem , Nefrite Lúpica/tratamento farmacológico , Animais , Dexametasona/efeitos adversos , Dexametasona/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Injeções Intraperitoneais , Injeções Intravenosas , Nefrite Lúpica/imunologia , Camundongos , Polietilenoglicóis , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química
20.
Sci Rep ; 11(1): 17263, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446801

RESUMO

Dexamethasone (Dex) is a highly insoluble front-line drug used in cancer therapy. Data from clinical trials indicates that the pharmacokinetics of Dex vary considerably between patients and prolonging drug exposure rather than increasing absolute dose may improve efficacy. Non-toxic, fully biodegradable Dex loaded nanovectors (NV) were formulated, via simple direct hydration within 10 min, as a vehicle to extend exposure and distribution in vivo. Dex-NV were just as effective as the free drug against primary human leukemia cells in vitro and in vivo. Importantly, high levels of DMSO solvent were not required in the NV formulations. Broad distribution of NV was seen rapidly following inoculation into mice. NV accumulated in major organs, including bone marrow and brain, known sanctuary sites for ALL. The study describes a non-toxic, more easily scalable system for improving Dex solubility for use in cancer and can be applied to other medical conditions associated with inflammation.


Assuntos
Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Polímeros/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacocinética , Criança , Dexametasona/química , Dexametasona/farmacocinética , Liberação Controlada de Fármacos , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Resultado do Tratamento , Células Tumorais Cultivadas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...